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ABSTRACT

A self adaptive mesh algorithm for

transmission-lines Finite Element analysis is

presented: it leads to an easy–to-use automatic FEN

program in which the mesh corresponding to the

domain discretization –necessary for the FEN

application- is automatically well adapted to the

structure under study, taking into account not only

its geometry and materials, but field behavior and

singularities. The method is based on the

calculation of the error of the gradient conjugate

solution of the structure FEN approach with a given
coarse mesh. The error analysis gives information

about the need of refining the grid, and which

elements must be subdivided. Method application to

the quasi–static approach of several anisotropic

“substrates microstrip–line structures is shown.

INTRODUCTION

In the past the Finite Element Method (Fill)
has proved to be a powerful tool for microwave

field problems analysis, difficult to solve by

other methods (l),(2),(3).

Nevertheless, to achieve a good accuracy the

FEN requires a mesh generation that must take into

account not only structure geometry and materials,

but field distribution and singularities. This

implies a manua 1 grid generation: a great

difficulty to produce fully automatic accurate and
efficient analysis programs.

This paper presents an adaptive mesh algorithm

able to generate easy-to-use fully automatic

analysis programs, solving the difficulties above

mentioned. The proposed adaptive algorithm may be

applied not only to a quasi–static approach but to
any FEN formulation: discontinuities analysis,

transmission-lines full-wave approach, etc.

Results of the method application to the

quasi-static analysis of several multiconductor

transmission-lines are shown: a good treatment of
field singularities and line parameters excellent

accuracy are obtained with moderate CPU time.

METHOD OF ANALYSIS

The cross section of a general anisotr~pic

transmission-line structure is shown in figure 1.

x

Figure 1. Cross section of a microwave
transmission-line

Variational formulation of the quasi-static approach

The quasi-static approach of the

electromagnetic problem of figure 1 structure,
reduces to that of finding the scalar potential

func t ion 4(X,Y) that minimizes the energy

functional:”

U = (1/2).[ (i@)T.;.@.ds
. (1)

.-
written in ma~tricial notatior~, where < is the

dielectric permittivity matrix (4),(5).

The corresponding Euler equation is the

generalized harmonic one:

-iiT.F.i7@-=o (21

Equations (l]I and (2) are subjected to the

appropriate Dirichlet or Neumann boundary conditions

For non-magnetic media, the N-multiconductor
transmission–line parameters computation requires

the U energy calculation of a set of different

boundary conditions situations of the original
problem, and a second set of the same problem, with
all dielectrics removed (5),(6). Symmetry or ant~

symmetry allows to reduce the number of problems to
be solved and the domain size under study.

Finite element discretization

For the FEM analysis each different dielectric

subregion is discretized into a finite number o:f

elements (7). A polynomial noial approximation of
the potential is employed in each of them:

(3)
i=~ ~ ~

where ~. is the potential value at node i, N. is

the i fi~ite element basis function of p o~der,
being M the number of nodes of the element.
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Substituting equation (3) into (1J and
~~e’ s A.U (8)

minimiz~ng this functional, the equations for nodal
e

if it is not achieved, the mesh will be

values @i derivation are obtained: automatically refined. The indication of which

1 [J

element is needed to be refined is simply obtained

G(~>Nj)= ~TNj.–&-V&dS=
)

‘VTNj.<.?.%T.dS .;=0 (4) co~paring each local estimate with the largest one,

s s
e e

<M . All elements having:

for each e element, being j = 1,. ..,M. <e’ ~ T.CM’ (9)

The assembly of all elements equations and the
will be refined, subdividing each of them into

introduction of the forced Dirichlet conditions
several elements. In order to achieve a new

lead to a global system:
conforming nesh the refinement will be propagated,

if necessary, to the contiguous elements, that will—=
K.@ = E (5) be also subdivided. To finalize the process two

that provides the desired potential nodal values
criteria may be used: that of equation (8), or a

@ (7). A postprocess to compute-the solution
given maximum number of meshes.

energy will give an upper bound U of the exact

value U.
IMPLEMENTATION OF THE FEM SELF ADAPTIVE SCHEME

Finite element solution error analvsis

In reference (8) it is demonstrated that the

solution error -due to equation (4) approximation–

satisfies the original boundary value problem with

appropriate residuals substituting the equations

second members. To measure the magnitude of the

error the energy norm is selected; in two

dimensions the error energy . norm can be

approximated by the global error estimate that will
be the summation over all elements of the e element
estimate:

[ J /1Cez=C. (he2/&m.p). r2.ds+(he/em.p). J2.dr (6)
s re

e

where C is a constant that is independent of the e

element, h is the largest side of the e element,

c is theepermittivity matrix minimum eigenvalue,

pmis the polynomial degree, r is the e element

surface residual

r . - VT. z.r$
e

(7)

and J, the jump of the ~.~~ vector normal component

across the e element interfaces, r , with other

elements or at the Neumann type bound~ries.

FEM self adaptive al~orithm description

The magnitude of the error decreases with an

increasing number of nodes (7), but in any case it

will be greater near sharp corners, due to field
singularities (9),(10).

Thus the usual procedures to improve results

accuracy are mesh subdivision and/or mesh grading

that provide a greater density of nodes in regions

with field singularities. The first procedure, when

applied to uniform mesh, is not always efficient
because it does not take into account field
singularities. The second one implies a previous
knowledge of field behavior.

A better procedure consists in a;, automatic

self adaptive mesh generation, based in the error
measurement of the FEN solution with a given

discretization mesh. Thus if the FEN is applied to
a coarse initial mesh, automatically generated from
the structure description, several postprocesses of
the solution will give the quasi-static energy U,

the error local estimate and the error global
estimate; a simple criterium for the adaptive
process to take place is given by:

The method above described has been applied,

to the analysis of anisotropic, multidielectric and

multiconductor transmission–lines structures, in

order to obtain the quasi–static parameters.

A coarse initial mesh is automatically

generated from the structure description: for thick

and zero metal thickness the initial mesh

generation algorithm is very simple; in the case of

thin strips, it is a more elaborated one, based in
the Delauny method, in order to provide non

degenerated elements near the strip corners.

Linear and higher order ordinary triangular

elements can be employed: the higher order ones are

more efficient, give a better field description,

and in their isoparametric version, provide the

necesary tool for accurate curved boundaries

consideration.

The assembled equations system is solved, for

the initial mesh, with a direct Cholesky method,

employing a sky–line matrix storage. For all other
meshes only the non–zero coefficients are stored

and a preconditioned conjugate gradient iterative

method is employed; at each mesh the iterative

process is initialized employing the previous mesh

solution, interpolated, for the new nodes, by means
of the basis functions of the previous mesh element

to whom the new nodes belong: thus, a fast

convergence to the equations system solution is

achieved. Nodes reordering techniques are employed.

The A and T parameters of expressions (8) and

(9) are selected by the user. For the element
subdivision, the algOrithm Of reference (II) has
been employed. This algorithm produces a sequence
of triangulations with bounded angles, and with a

smooth transition between small and large
triangles. Both process finalizing criteria have
been implemented.

RESULTS

The self adaptive algorithm was checked

aPPIYing it to structures with analytical solution
and studied by other authors. Figures 2a)-f)
correspond to a square coaxial structure: the mesh
evolution shows the expected corner refinement due
to field singularities. Table I compares the
results for imDedance and capacitance with previous
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ones, showing an accuracy improvement of the
corresponding bounds. CPU time for same order of

accuracy can be compared with results of FEM

analysis over uniform meshes of increasing density

shown in Table II: CPU time refers to the whole

process of uniform mesh refining, until the
mentioned mesh is reached. Figures 3a)-c) show a

symmetric stripline structure of zero metal
thickness, the initial mesh, and one mesh step,
showing the refinement due to the strong
singularity of the zero metal thickness strip
corner. Table III compares results with previous
ones.

Figures 4a)-d) correspond to a single

microstrip–line structure: results (table IV) are

in agreement with those calculated by the method

proposed in (14) and show the interest of metal

thickness consideration if good accuracy is

desired.

In figures 5a)–c) it can be seen an asymmetric

coupled suspended lines structure over an aniso-

tropic substrate -sapphire with non girated axes–,

a mesh step of the configuration corresponding to
the C parameter calculation and the equipotential

lines~z that show how the mesh is well adapted.

Results are shown in table V.

The example of figures 6a)-b) corresponds also

to an asymmetric suspended coupler with the strips

in different planes and with anisotropic substrate.

Results are shown in table VI.

fL
C$=ov j

D
+=lV T

2a

!

T
E

0

Z.a )

2C )

2e )

Figure 2. Square coaxial structure
a) Structure b)-f) Mesh evolution

2b )

2d )

2f )
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RefeeneR#

4 mesh steps 36.75400 10.:250048 0.155
5 mesh steps 36.78606 10.:241116 0.068
6 mesh steps 36.79878 10.:237576 0.033
7 mesh steps 36 80681 10 ‘235342 0.012
8 mesh steps 36.80916 10.234687 0.005

Exact (12), (13) 36.81132 10.2341,

Reference (13)** 36.7921 ●’Lower bound

Table I. Sc[uare coaxial structure, P=2

LI

Number

‘“:!3:::J:SZJ%$?I

elements nodes
3

12 35 36.48192 ’10.326493 6 SC

48 117 36.67962 “1O.270883 10 Sc

192 425 36.75896 ’10.248663 16 SC

l-E&EEiiiil
Table II. Square coaxial structure, P=2,

I “’f”r” mesh ———.__J
—.

3b )

Figure 3. Symmetric stripline

a) Structure b) Initial mesh

c) Mesh step

3C )

~2Hm~his~ethocwithCo/(4 co) Error (%)

7 mesh steps 1:471206 .

w~o-o~~erb~~

Table 111. Symmetric stripline,

‘ L-=--J

Figure 4. Single microstrip-line

a) Symmetric structure

b) Mesh step of a zero metal thickne

structure half section

c) Mesh step of a non zero metal

4C )
thickness structure half section

d) Zoom over strip corner of fizure

Ss

4C )



Z. m) Cef
~08>%c

hm=O. Omm 48.93481 1.845903 2.206562

hm=O .0 18mm 48.01976 1.832075 2.214874

Table IV. Single microstrip-line

parameters

w=3.56mm, h=3.272mm,

wm=0.8mm, hq=0.254mm, cr=2. 17, P=2

1- W. J
5a)

5b )

Cll =

C22 =

C12 ‘-

‘Coil=

C022=

co12=- 1
0.805397.10-10

0.696536.10-10

-0.419785.10-’0

0.337606.10-10

0.258260.10-10

-0.086791.10-10

rTable V. Capacitance

matrix coef. (F/m)

u=?. 12mm, h=3. 56mm,

h~=O. 254mm, hm=O. Omm,

ml=l. 5mn, WM2=0. 75mnw

s=o.4mm, p=2, c ~1=9. 4,

‘12=0’ ’22
:11.6

Figure 5. Asymmetric coupled suspended lines

a] Structure b) Mesh step for +I=OV, @ =lv
c) Equipotentials lines for @l=Ov, +2=1?.

1 “ J
6a 1

rc11= 0.211618,10-9

C22
= 0. 192196.10-9

C12
=-O. 164695 .10-9

Coil
= 0.419336. 10-lC

-lC

C022= 0.316218-10

C012
=-0.172641 .’10-10

El
Table VI. Capacitance

matrix coef. (F/m)

w=7. 12mm, h=3.56~,

hs=.508mm, hm=O. mm,

~1=1.6mm, wm2=.8mm,w

s=.4m, p=2, c11 =9. 4,

’12
=0,

‘22=1 1.6

parallel coupler
a) Structure b) Mesh step for boundary
conditions $41=OV, q42=lv.

CONCLUSIONS

A self adaptive algorithm for FEN analysis of

quasi-TEN structures has been presented. It

provides a new method for mesh generation leading

to automatic FEN programs with an adequate ,

treatment of field singularities. Results presented
“show that good accuracy with moderate CPU time is

obtained.
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