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ABSTRACT

A self adaptive mesh algorithm for
transmission-lines Finite Element analysis is
presented: it leads to an easy-to-use adutomatic FEM
program in which the mesh corresponding to the
domain discretization -necessary for the FEM
application~ is automatically well adapted to the
structure under study, taking into account not only
its geometry and materials, but field behavior and
singularities. The method is based on the
calculation of the error of the gradient conjugate
solution of the structure FEM approach with a given
coarse mesh. The error analysis gives information
about the need of refining the grid, and which
elements must be subdivided. Method application to
the quasi-static approach of several anisotropic
‘substrates microstrip-line structures is shown.

INTRODUCTION

In the past the Finite Element Method (FEM)
has proved to be a powerful tool for microwave
field problems analysis, difficult to solve by
other methods (1), (2), (3).

Nevertheless, to achieve a good accuracy the
FEM requires a mesh generation that must take into
account not only structure geometry and materials,
but field distribution and singularities. This
implies a manual grid generation: a great
difficulty to produce fully automatic accurate and
efficient analysis programs.

This paper presents an adaptive mesh algorithm
able to generate easy-to-use fully automatic
analysis programs, solving the difficulties above
mentioned. The proposed adaptive algorithm may be
applied not only to a quasi-static approach but to
any FEM formulation: discontinuities analysis,
transmission-lines full-wave approach, etc.

Results of the method application to the
quasi-static analysis of several multiconductor
transmission-lines are shown: a good treatment of
field singularities and line parameters excellent
accuracy are obtained with moderate CPU time.

METHOD OF ANALYSIS

The cross section of a general anisotropic
transmission-line structure is shown in figure 1.
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Figure 1. Cross section of a microwave
transmission-line

Variational formulation of the quasi-static approach

The quasi-static approach of the
electromagnetic problem of figure 1 structure,
reduces to that of finding the scalar .potential
function ¢(x,y) that minimizes the energy
functional:

U= (1/2).L(\7¢)T.5v_¢.ds (1)

written in matricial notation, where € is the
dielectric permittivity matrix (4), (5).
The corresponding Euler
generalized harmonic one:
V' .eVp=0 2)
Equations (1) and (2) are subjected to the
appropriate Dirichlet or Neumann boundary conditions

equation 1is the

For non-magnetic media, the N-multiconductor
transmission-line parameters computation requires
the U energy calculation of a set of different
boundary conditions situations of the original
problem, and a second set of the same problem, with
all dielectrics removed (5), (6). Symmetry or anti
symmetry allows to reduce the number of problems to
be solved and the domain size under study.

Finite element discretization

For the FEM analysis each different dielectric
subregion is discretized into a finite number of
elements (7). A polynomial nodal approximation of
the potential is employed in each of them:

M —
=Y N .p =NK.¢ (3)
i=1 - 7
where ¢. is the potential value at node i, N, is
the i finite element basis {function of p order,
being M the number of nodes of the element.
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Substituting equation (3) into (1) and
minimizing this functional, the equations for nodal
values ¢i derivation are obtained:

e V. dS=

n =T =T, = =57 -
= N..€.V.N .dS}.¢=0 4
G(¢,Nj) VNJ Uv 3 P ] ¢ (4)

s
e

s
e

for each e element, being j 1,...,M

The assembly of all elements equations and the
introduction of the forced Dirichlet conditions
lead to a global_ system:

(5}

that provides the desired potential nodal values

¢ (7). A postprocess to compute the solution
energy will give an upper bound U of the exact
value U.

Finite element solution error analysis

In reference (8) it is demonstrated that the
solution error -due to equation (4) approximation-
satisfies the original boundary value problem with
appropriate residuals substituting the equations
second members. To measure the magnitude of the
error the energy norm 1is selected; in two
dimensions the error energy - norm can be
approximated by the global error estimate that will
be the summation over all elements of the e element
estimate:

2 2 2 2
g, =C.[(he /em.p).J r .ds+(he/sm.p).J J .dF]
s r
e

where C is a constant that is independent of the e
element, h is the largest side of the e element,
€. is the permittivity matrix minimum eigenvalue,
p is the polynomial degree, r is the e element
surface residual

r

e

(6)

~ .5 Vg (7)
and J, the jump of the E.V& vector normal component

across the e element interfaces, Fe’ with other
elements or at the Neumann type boundaries.

FEM self adaptive algorithm description

The magnitude of the error decreaseswith an
increasing number of nodes (7), but in any case it
will be greater near sharp corners, due to field
singularities (9), (10).

Thus the usual procedures to improve results
accuracy are mesh subdivision and/or mesh grading
that provide a greater density of nodes in regions
with field singularities. The first procedure, when
applied to uniform mesh, is not always efficient
because it does not take into account field
singularities. The second one implies a previous
knowledge of field behavior.

A better procedure consists in an automatic
self adaptive mesh generation, based in the error
measurement of the FEM solution with a given
discretization mesh. Thus if the FEM is applied to
a coarse initial mesh, automatically generated from
the structure description, several postprocesses of
the solution will give the quasi-static energy U,
the error local estimate and the error global
estimate; a simple criterium for the adaptive
process to take place is given by:
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(8)

if it is not achieved, the mesh will be

automatically refined. The 1indication of which
element is needed to be refined is simply obtained
comparing each local estimate with the largest one,

2<
Lg =au
e

CMZ' All elements having:
2 2
e T UGy (9)
will be refined, subdividing each of them into
several elements. In order to achieve a new

conforming mesh the refinement will be propagated,
if necessary, to the contiguous elements, that will
be also subdivided. To finalize the process two
criteria may be used: that of equation (8), or a
given maximum number of meshes.

IMPLEMENTATION OF THE FEM SELF ADAPTIVE SCHEME

The method above described has been applied,
to the analysis of anisotropic, multidielectric and
multiconductor transmission-lines structures, in
order to obtain the quasi-static parameters.

A coarse initial mesh is automatically
generated from the structure description: for thick
and zero metal thickness the initial mesh
generation algorithm is very simple; in the case of
thin strips, it is a more elaborated one, based in
the Delauny method, 1in order to provide non
degenerated elements near the strip corners.

Linear and higher order ordinary triangular
elements can be employed: the higher order ones are
more efficient, give a better field description,
and in their isoparametric version, provide the
necesary tool for accurate curved boundaries
consideration.

The assembled equations system is solved, for
the initial mesh, with a direct Cholesky method,
employing a sky-line matrix storage. For all other
meshes only the non-zero coefficients are stored
and a preconditioned conjugate gradient iterative
method is employed; at each mesh the iterative
process is initialized employing the previous mesh
solution, interpolated, for the new nodes, by means
of the basis functions of the previous mesh element
to whom the new nodes belong: thus, a fast
convergence to the equations system solution is
achieved. Nodes reordering techniques are employed.

The A and ¥y parameters of expressions (8) and
(9) are selected by the user. For the element
subdivision, the algorithm of reference (11) has
been employed. This algorithm produces a sequence
of triangulations with bounded angles, and with a
smooth transition between small and large
triangles. Both process finalizing criteria have
been implemented.

RESULTS

The self adaptive algorithm was checked
applying it to structures with analytical solution
and studied by other authors. Figures 2a)-f)
correspond to a square coaxial structure: the mesh
evolution shows the expected corner refinement due
to field singularities. Table I compares the
results for impedance and capacitance with previous



ones, showlng an accuracy
corresponding bounds. CPU time for same order of
accuracy can be compared with results of FEM
analysis over uniform meshes of increasing density
shown in Table II: CPU time refers to the whole
process of wuniform mesh refining, until the
mentioned mesh is reached. Figures 3a)-c) show a
symmetric stripline structure of zero metal
thickness, the initial mesh, and one mesh step,
showing the refinement due to the strong
singularity of the zero metal thickness strip

corner. Table III compares results with previous
ones.

improvement of the

Figures 4a)-d) correspond to a single
microstrip-line structure: results (table IV) are
in agreement with those calculated by the method
proposed in (14) and show the interest of metal
thickness consideration if good accuracy is
desired.

In figures S5a)-c) it can be seen an asymmetric
coupled suspended lines structure over an aniso-
tropic substrate -sapphire with non girated axes-,
a mesh step of the configuration corresponding to
the C2 parameter calculation and the equipotential
lines, that show how the mesh is well adapted.
Results are shown in table V.

The example of figures 6a)-b) corresponds also
to an asymmetric suspended coupler with the strips
in different planes and with anisotropic substrate.
Results are shown in table VI.

|-

¢=1v

€

[¢]
2a) 2b)
2c) 2d)
2e) 2f)

Figure 2. Square coaxial structure
a) Structure b)-f) Mesh evolution
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ZO(Q) C,/¢, Erfor CPU time
This method with (%) |VAX 8800
4 mesh steps|36.75400}10.2500480. 155 13 sc
5 mesh steps|36.78606{10.241116|0.068 18 sc
6 mesh steps|36.79878{10.237576(0.033| 23 sc
7 mesh steps|36.80681|10.235342|0.012] 28 sc
8 mesh steps|36.80916}10.234687]0.005 35 sc
Exact (12), (13)}36.81132{10.2341
Reference (12)* 10. 3644 *Upper bound
Reference (13)**]36.7921 | **Lower bound
Table I. Square coaxial structure, p=2

Number |Number ZO(Q) Co/co CPU time
elements|nodes VAX 8800
3 12 [36.01883]10. 459259 3 sc
12 35 [36.48192]10.326493 6 sc
48 117 [36.67962}10.270883 10 sc
192 425 |36.75896(10.248663 16 sc
768 1617 |36.79053}10.239872] 35 sc
3072 6305 |36.80306|10.236386| 166 sc
Table 1I. Square coaxial structure, p=2,
uniform mesh
Y
* a=2b —
‘o b¢=1—v—_r
— y=b ——n l
$=0v 3a)
3b)
Figure 3. Symmetric stripline
a) Structure b) Initial mesh
c) Mesh step
3c¢)
This method with| Co” (% )| Errer ()] Ry tine
4 mesh steps| 1.483990 0.999 14 sc
S mesh steps| 1.476670 0.745 19 sc
6 mesh steps| 1.473025 0.380 25 sc
7 mesh steps| 1.471206 0.135 31 sc
8 mesh steps| 1.470298 0.073 39 sc
9 mesh steps| 1.469822 0. 060 44 sc
Exact (12}, 1.46922
Reference (12)%|..1.51899 *Upper bound
Table III. Symmetric stripline, p=2

a)
b)

c)

4c)

d)

Symmetric
Mesh step
structure
Mesh step
thickness
Zoom over

4b)

Figure 4. Single microstrip-line

structure

of a zero metal thickness
half section

of a non zero metal
structure half section

strip corner of figure 4c)



Z2 (Q) € v

° f 105ndsc
hm=0.0mm 48.93481]1.845903[2.206562
hm=0.018mm 48.01976|1.832075|2.214874
Table IV. Single microstrip-line

parameters
w=3.56mm, h=3.272mm,
wm=0.8mm,hs=0.254mm,cr=2.17,p=2

i}

C11 0.805397. 10
C22 0.696536. 10
C12 =-0.419785. 10

= 0.337606. 10

Co11
C,,,= 0.258260. 10
c

022

012=—0.086791.10

5a) Table V. Capacitance
matrix coef. (F/m)

w=7.12mm, h=3.56mn,
h_=0.254mm,h_=0. Omm,
s m

w_.=1.5mm,w _=0.7Smm
ml m2

s=0.4mm)p=2:811=9.4,
0, €£,,=11.6

22

€127

Sb)

7 T S B W e e
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Figure 5. Asymmetric coupled suspended lines
a) Structure b) Mesh step for ¢ =0v, ¢ =1v
c¢) Equipotentials lines for ¢1=0v, ¢2=1v.

S¢)

iy 0.211618,10°
C,, = 0.192196.10
1 ="0.164695.10
011= 0-419336.10
= 0.316218.10

022

C
C012=—0.172641510

n

o}
C

10

Table VI.Capacitance
matrix coef. (F/m)

w=7.12mm, h=3.56mm,

h_=.508mm, h_=0.mm,
s m

wm1=1.6mm, wm2=.8mm,

=.4mm, p=2, =92.4,
S mm, p=2 811 9.4
812=0, 822=11.6

6b)
Figure 6. Suspended offset parallel coupler
a) Structure b} Mesh step for boundary
conditions ¢1=0v, ¢§=1V'

CONCLUSIONS

A self adaptive algorithm for FEM analysis of

quasi-TEM structures has ©been presented. It
provides a new method for mesh generation leading
to automatic FEM programs with an adequate
treatment of field singularities. Results presented
‘show that good accuracy with moderate CPU time is
obtained.
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